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Abstract
Many scientific conferences employ a two-phase paper review
process, where some papers are assigned additional review-
ers after the initial reviews are submitted. Many conferences
also design and run experiments on their paper review pro-
cess, where some papers are assigned reviewers who provide
reviews under an experimental condition. In this paper, we con-
sider the question: how should reviewers be divided between
phases or conditions in order to maximize total assignment
similarity? We make several contributions towards answer-
ing this question. First, we prove that when the set of papers
requiring additional review is unknown, a simplified variant
of this problem is NP-hard. Second, we empirically show
that across several datasets pertaining to real conference data,
dividing reviewers between phases/conditions uniformly at
random allows an assignment that is nearly as good as the
oracle optimal assignment. This uniformly random choice is
practical for both the two-phase and conference experiment
design settings. Third, we provide explanations of this phe-
nomenon by providing theoretical bounds on the suboptimality
of this random strategy under certain natural conditions. From
these easily-interpretable conditions, we provide actionable
insights to conference program chairs about whether a random
reviewer split is suitable for their conference.

1 Introduction
Peer review is a widely-adopted method for evaluating sci-
entific research and a highly useful application of human
computation. Careful assignment of reviewers to papers is
critically important in order to ensure that reviewers have
the requisite expertise and that the resulting reviews are of
high quality. At large scientific conferences, the paper assign-
ment is usually chosen by solving an optimization problem.
Given a set of papers, a set of reviewers, and a similarity
matrix consisting of scores representing the level of expertise
each reviewer has for each paper, the standard paper assign-
ment problem is to find an assignment of reviewers to papers
that maximizes total similarity, subject to constraints on the
reviewer and paper loads. This standard paper assignment
problem is a simple matching problem and so can be effi-
ciently solved (for example, through linear programming).
Our work is motivated by two scenarios that arise in the
context of paper assignment in conference peer review.
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Motivation 1: Two-phase paper assignment. Many con-
ferences (e.g., AAAI 2021-2022, IJCAI 2022) have adopted
a two-phase review process. After the initial reviews are
submitted, a subset of papers proceed to a second phase of
reviews with additional reviewers assigned. There are a va-
riety of reasons that a two-phase reviewing process can be
helpful. For example, the process can be used to triage pa-
pers based on reviews in the first phase. This can allow the
conference to solicit additional reviews only on papers that
obtained sufficiently high ratings in the first phase and have
any chance of getting accepted (as done at AAAI 2021). The
second phase can also help focus on evaluation of the papers
in the “messy middle”—the papers at the borderline between
acceptance and rejection. This messy middle model (Price
2014), which hypothesizes that the acceptance decisions for
some percentage of submitted papers are effectively random,
was proposed after the NeurIPS 2014 experiment (Lawrence
2014) in order to explain the observed inconsistency in ac-
ceptance decisions. Additional reviewers could improve the
evaluation of these papers to more accurately discern which
should be accepted. Later analysis of the NeurIPS 2015 and
2016 review process found that the size of the messy mid-
dle in these conferences was 45% and 30% of submissions
respectively (Shah et al. 2018). A second phase of reviews
can also be used to help compensate for reviewers who were
unresponsive or minimally responsive in the first phase, who
can no longer review due to problems in their personal lives,
who discovered conflicts they had with a paper assigned to
them and recused themselves from it, etc.

In all of these cases, the set of papers that will require ad-
ditional review is unknown beforehand. While some venues
choose to recruit new reviewers after knowing which papers
proceed to phase two, the tight timeline of many conferences
makes it hard to recruit new reviewers after phase one. In
SIGMOD 2019 (Ailamaki et al. 2019): “Additional reviews
were solicited manually by the chairs and this was a huge
time sink, especially when some reviewers refused to take on
the additional assignment. The additional review solicitation
needs to be automated and reviewer expectations need to be
set appropriately beforehand.” For this reason, it is best if
all the reviewers are recruited at the beginning, and a key
question is then how to assign reviewers to papers in the
first phase such that enough review capacity is saved for the
second phase.
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Motivation 2: Conference experiment design. Review-
ers also need to be split into two groups when conferences
run controlled experiments on the paper review process. Con-
ferences often run such experiments to test changes to the
review process. For example, the WSDM 2017 conference
conducted an experiment to test the effects of single-blind
versus double-blind reviewing (Tomkins, Zhang, and Heavlin
2017). As another example, the NeurIPS 2014 and 2021
conferences ran experiments testing the consistency of ac-
ceptance decisions by providing some papers with a second
set of reviews from a separate group of reviewers (Lawrence
2014; Price 2014; Beygelzimer et al. 2021). In these exper-
iments, all papers receive reviews conducted in the usual
manner (the control condition), but a random subset of pa-
pers are additionally assigned reviewers who provide reviews
under an experimental condition. In the NeurIPS 2014/2021
experiments, a random 10% of papers were put in the exper-
imental condition and received a second set of reviews. In
the WSDM 2017 experiment, the subset of papers was the
full paper set; that is, all papers were reviewed under both
single-blind and double-blind conditions. The key question
is then how to divide the reviewers between the control and
experimental conditions. As in the NeurIPS 2014/2021 and
WSDM 2017 experiments, this is often done randomly for
statistical purposes. However, conferences still want to en-
sure that the resulting assignment of papers to reviewers is of
high similarity.

As our results apply to both the two-phase and experi-
ment design settings, we will use the generic terminology of
“stages” to refer to both phases and conditions simultaneously
across the two settings.

Problem outline. In this paper, we formally analyze the
two-stage paper assignment problem, which encompasses
both above motivations. As stated earlier, the standard paper
assignment problem is to maximize the total similarity of the
assignment subject to load constraints and is efficiently solv-
able. However, in the two-stage paper assignment problem,
we must additionally decide how much of each reviewer’s
capacity should be saved to review papers in the second
stage. We assume that the fraction of papers that will need
additional reviews is known and that the set of second-stage
papers is chosen uniformly at random.

Because of constraints present in each setting, the
maximum-similarity paper assignment across the two stages
cannot be achieved. In the two-phase setting, the set of pa-
pers that will need to be reviewed in the second stage is
unobserved when the first-stage assignment is made, making
the problem one of stochastic optimization. In the experi-
ment design setting, reviewers are often randomized between
stages for statistical purposes. We show that a simple strategy
for choosing reviewers to save for the second stage performs
near-optimally in terms of assignment similarity and can be
used in either setting.

Contributions. Our contributions are as follows.
First, we identify and formulate the two-stage paper assign-

ment problem, an issue of practical importance to modern
conferences, with applications to two-phase paper assignment
and conference experiment design (Section 3).

Second, we prove that a simplified version of the problem

is NP-hard, suggesting that the problem may not be efficiently
solvable (Section 4).

Third, we empirically show that a very simple “random
split” strategy, which chooses a subset of reviewers uniformly
at random to save for the second stage, gives near-optimal as-
signments on real conference similarity scores (Section 5.1).
This result is summarized in Figure 1, which shows the as-
signment similarity achieved using random split as compared
to the oracle optimal assignment (which views the set of
second-stage papers before optimally assigning reviewers
across both stages) for several datasets. We find that all ran-
dom reviewer splits achieve at least 90% of the oracle optimal
solution’s similarity on all datasets and at least 94% on all
but two experiments. These results hold across similarities
constructed via a variety of methods used in practice (includ-
ing text-matching, bidding, and subject areas), indicating that
random split is robust across methods of similarity construc-
tion. They also hold both when the second-stage papers are
drawn uniformly at random (as in Figure 1a) and when they
are selected based on the review scores of the papers (as in
Figure 1b). In practice, this means that program chairs plan-
ning a two-phase review process or a conference experiment
can simply split reviewers across the two phases/conditions
at random without concerning themselves with the potential
reduction in assignment quality.

We also show that this good performance is not achieved
in general: there exist similarity matrices on which random
split performs very poorly (Section 5.2).

Fourth, we theoretically explain why random split per-
forms well on our real conference similarity matrices by de-
riving theoretical bounds on the suboptimality of this random
strategy under certain natural conditions (Sections 6 and 7).
We consider two such sufficient conditions here, which are
met by our datasets: if the reviewer-paper similarity matrix is
low-rank, and if the similarity matrix allows for a high-value
assignment (in terms of total similarity) with a large number
of reviewers assigned to each paper. From these results, we
give key actionable insights to conference program chairs to
help them decide–well before the reviewers and/or papers
are known–if random split is likely to perform well in their
conference.

The full version of the paper can be found online,1 as can
all of the code for our empirical results.2

2 Related Work
Our work assumes that the “similarities” between reviewers
and authors are given. In practice, there are several ways in
which these similarities are computed, and different program
chairs often make different decisions on how this computa-
tion is done. The similarities are generally computed using
one or more of the following three sources of data:

• Text-matching of papers: Natural language processing
techniques (Mimno and McCallum 2007; Liu, Suel, and
Memon 2014; Rodriguez and Bollen 2008; Tran, Cabanac,
and Hubert 2017; Charlin and Zemel 2013) are used to

1https://arxiv.org/abs/2108.06371
2https://github.com/sjecmen/multistage_reviewing_bounds
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(a) Second-stage papers drawn uniformly at random
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(b) Second-stage papers chosen as the top- or middle-
scoring papers from ICLR

Figure 1: Range of assignment similarities found over 10 random reviewer splits on real conference data, as a fraction of the
oracle optimal assignment’s similarity (computed after observing the second-stage papers). β indicates the fraction of papers
in the second stage. The ICLR similarities (Xu et al. 2019) [911 papers, 2435 reviewers] are constructed from text-matching
between papers and reviewers’ past work, PrefLib3 (Mattei and Walsh 2013) [176 papers, 146 reviewers] and Bid1 (Meir et al.
2020) [600 papers, 400 reviewers] similarities are constructed from bidding data, and SIGIR (Karimzadehgan, Zhai, and Belford
2008) [73 papers, 189 reviewers] similarities are constructed from reviewer and paper subject areas.

match the text of the submitted paper with the text of the
reviewers’ past papers.
• Subject areas: The program chairs create a list of subject

areas relevant to the conference. Each reviewer selects
a subset of these subject areas that are representative of
their expertise, and each submitted paper is accompanied
by the authors selecting the subject areas relevant to the
paper.
• Bids: A number of conferences adopt a bidding system,

where reviewers are shown a list of (some of) the papers
that are submitted to the conference (and which do not
conflict with them) and asked to indicate the papers which
they are willing to review (Cabanac and Preuss 2013; Fiez,
Shah, and Ratliff 2020; Meir et al. 2020).

If more than one such source of data is used by the conference,
they are combined in a manner deemed suitable by the pro-
gram chairs (Shah et al. 2018). These computed similarities
are then used to assign reviewers to papers. By far the most
popular method of doing this assignment is to solve an opti-
mization problem that maximizes the sum of the similarities
of the assigned reviewer-paper pairs, subject to constraints on
the reviewer and paper loads (Charlin and Zemel 2013; Long
et al. 2013; Goldsmith and Sloan 2007; Tang, Tang, and Tan
2010; Flach et al. 2010; Taylor 2008). Given its widespread
popularity, we analyze this sum-similarity objective in our
paper.

That being said, there are other objectives that are also
proposed for automated assignment using the similarities,
such as the max-min fairness objective (Garg et al. 2010;
Stelmakh, Shah, and Singh 2019a; Kobren, Saha, and Mc-
Callum 2019). A recent work (Jecmen et al. 2020) proposes
assignments via optimizing the sum similarity but with some
randomness in order to prevent fraud in peer review. Another
line of work (Alon et al. 2011; Xu et al. 2019; Aziz et al.

2019) proposes assigning reviewers to papers in a manner
that a reviewer cannot influence the outcome of their own
paper by manipulating the reviews they provide. Finally, in
practice, the conference organizers may also additionally
apply manual tweaks to the outputs of any such automated
procedure.

At a high level, the problem we study in the two-phase
setting shares several common characteristics with problems
in online (stochastic) matching (Karp, Vazirani, and Vazirani
1990; Feldman et al. 2009; Dickerson, Procaccia, and Sand-
holm 2012; Dickerson et al. 2018; Brubach et al. 2016), often
considered in the context of ride-sharing, kidney exchange, or
internet advertising. Particularly related to our results is the
line of research on two-stage stochastic matching (Kong and
Schaefer 2006; Katriel, Kenyon-Mathieu, and Upfal 2008;
Escoffier et al. 2010; Lee and Singla 2020; Feng, Niazadeh,
and Saberi 2021), which generally focuses on providing algo-
rithms with tight approximation ratios that hold for any (i.e.,
worst-case) problem instances. To the best of our knowledge,
the specific stochastic matching problem we consider (which
arises in the context of paper assignment for peer review)
has not previously been studied. Additionally, in contrast to
this line of work, we aim to provide and justify simple and
practical solutions (such as choosing reviewers uniformly at
random) based on data-dependent conditions likely to hold
in real-world paper assignment instances.

The simplified version of our problem considered in Sec-
tion 4 can be seen as an instance of maximizing a submodular
function subject to a cardinality constraint (see Appendix C).
The paper (Buchbinder et al. 2014) gives an approximation
algorithm achieving an approximation ratio of no greater than
0.5. However, this guarantee is very weak in the paper assign-
ment setting since it can be trivially achieved by maximizing
similarity in the first stage alone.
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One motivation for our work is that of running controlled
experiments in peer review. Controlled experiments pertain-
ing to peer review are conducted in many different scientific
fields (Armstrong 1980; Pier et al. 2017; Teplitskiy et al.
2019; Ceci and Peters 1982; Patat et al. 2019), including
several controlled experiments recently conducted in com-
puter science (Lawrence 2014; Tomkins, Zhang, and Heavlin
2017; Stelmakh et al. 2021, 2020). These experiments have
also led to a relatively nascent line of work on careful design
of experimental methods for peer review (Stelmakh, Shah,
and Singh 2019b, 2021), and our work sheds some light in
this direction in terms of trading off assignment quality with
randomization in the assignment. Some other experiments
in conferences (Madden and DeWitt 2006; Tung 2006; Man-
zoor and Shah 2021) do not operate under controlled settings,
but exploit certain changes in the conference policy such as
a switch from single blind to double blind reviewing (i.e.,
natural experiments). Overall, experiments offer important in-
sights into the peer review process; see (Shah 2022) for more
discussion on challenges in peer review and some solutions.

3 Problem Formulation
In this section, we formally define the two-stage paper assign-
ment problem. Given a set of n papers P = [n] and a set of
m reviewersR = [m], define S ∈ [0, 1]m×n as the similarity
scores between each reviewer and paper. An assignment of pa-
pers to reviewers is represented as a matrix A ∈ {0, 1}m×n,
where Arp = 1 if reviewer r is assigned to paper p and
Arp = 0 otherwise. In the standard paper assignment prob-
lem, the objective is to find an assignment A of reviewers
to papers such that the total similarity

∑
r∈R,p∈P ArpSrp is

maximized, subject to constraints that each paper is assigned
exactly a certain load of reviewers, each reviewer is assigned
to at most a certain load of papers, and any reviewer-paper
pairs with a conflict of interest are not assigned (Charlin and
Zemel 2013; Charlin, Zemel, and Boutilier 2011; Goldsmith
and Sloan 2007; Flach et al. 2010; Kobren, Saha, and Mc-
Callum 2019). In this work, we accommodate conflicts of
interest by assuming the corresponding similarities are set
to 0. This problem can be formulated as a min-cost flow
problem or as a linear program, and can be efficiently solved.

In a two-stage assignment, all papers P require a certain
number of reviewers in the first stage and a subset of papers
P2 ⊆ P require additional review in the second stage. We
assume that P2 consists of a fixed fraction β of papers and is
drawn uniformly at random from P . Specifically, for some
β ∈ { 1n , . . . ,

n
n}, we assume that P2 ∼ Uβn(P), the uniform

distribution over all subsets of size βn of P . In the two-phase
setting, the fraction β itself can be viewed as a parameter that
the program chairs set based on available reviewer resources,
or it can be estimated from past editions of the conference.
Our empirical results detailed in Section 5.1 also cover the
case where papers are chosen for the second phase based on
their first-phase review scores. In the conference experiment
design setting, the value of β and the uniform distribution
of P2 are both experiment design choices. The choice of a
uniform distribution for P2 is common, as in the NeurIPS
2014/2021 and WSDM 2017 experiments. The question we

analyze is: how should reviewers be assigned to papers across
the two stages?

Before continuing further, we introduce some notation.
For subsets R′ ⊆ R and P ′ ⊆ P , desired paper load
`pap ∈ Z+, and maximum reviewer load `rev ∈ Z+,
define M(R′,P ′; `rev, `pap) ⊆ {0, 1}m×n as the set of
valid assignment matrices on R′ and P ′. Formally, A ∈
M(R′,P ′; `rev, `pap) if and only if

∑
r∈R′ Arp = `pap for

all p ∈ P ′,
∑
p∈P′ Arp ≤ `rev for all r ∈ R′, and Arp = 0

for all (r, p) 6∈ R′ × P ′.
The two-stage paper assignment problem is to maximize

the total similarity of the paper assignment across both stages.
Without loss of generality, we instead consider the mean
similarity so that later results will be easier to interpret. Fix a
stage one paper load `(1)pap, a stage two paper load `(2)pap, and an
overall reviewer load `rev such that `(1)papn+`

(2)
papβn ≤ `revm

(i.e., the number of reviews required by papers is no greater
than the number of reviews that can be supplied by reviewers).
Given P2, the oracle optimal assignment has mean similarity

Q∗(P2) = max
A∈M(R,P;`rev,`(1)pap),
B∈M(R,P2;`rev,`

(2)
pap)

1

`
(1)
papn+ `

(2)
papβn

 ∑
r∈R,p∈P

ArpSrp

+
∑

r∈R,p∈P2

BrpSrp


subject to

∑
p∈P

Arp +Brp ≤ `rev ∀r ∈ R.

The last constraint ensures that each reviewer’s assignment
across both stages does not exceed the maximum reviewer
load. Just like the standard paper assignment problem, the
oracle optimal assignment for a given P2 can be found ef-
ficiently. However, in both the two-phase and experiment
design settings, this oracle optimal assignment is either un-
achievable or undesirable. In the two-phase setting, the set
of papers P2 requiring additional review is unknown until
after the stage one assignment is chosen. Thus, the oracle
optimal assignment cannot be computed beforehand. In the
experiment design setting, the assignment of reviewers to
conditions is commonly randomized in order to gain statis-
tical power, as was done in the WSDM 2017 and NeurIPS
2014/2021 experiments. Thus, a deterministic choice of as-
signment may not be desirable. Additionally, depending on
the experiment setup, it may not be possible for a reviewer to
review papers in both conditions. In what follows, we use this
oracle optimal assignment value as an unachievable baseline
for comparison.

We instead consider simple strategies for the two-stage as-
signment problem that choose a subsetR2 ⊆ R of reviewers
to save for the second stage without observing P2, leaving
reviewersR1 = R \R2 to be assigned to papers in the first
stage. Unlike the oracle optimal assignment, such strategies
are feasible to implement in both settings since they do not
require knowledge of P2, do not split reviewer loads across
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conditions, and allow for a random choice ofR2. The mean
similarity of the optimal assignment when reviewersR2 and
papers P2 are in the second stage is

Q(R2,P2) =

1

`
(1)
papn+ `

(2)
papβn

 max
A∈M(R\R2,P;

`rev,`
(1)
pap)

∑
r∈R\R2,p∈P

ArpSrp

+ max
B∈M(R2,P2;

`rev,`
(2)
pap)

∑
r∈R2,p∈P2

BrpSrp

 .
We require that `rev|R2| ≥ `

(2)
papβn and `rev(m − |R2|) ≥

`
(1)
papn for feasibility in both stages. Given R1, R2, and P2,

the optimal paper assignment in each stage can be efficiently
computed using standard methods. Thus, the the difficulty of
the problem lies entirely in choosingR2.

The expected mean similarity of the optimal assignment
when saving reviewersR2 for the second stage is

f(R2) = EP2∼Uβn(P) [Q(R2,P2)] .

We can also evaluate the suboptimality ofR2 as compared to
the oracle optimal assignment as

Q∗(P2)−Q(R2,P2), where P2 ∼ Uβn(P).

Note that Q∗ and Q are bounded in [0, 1], so that both f and
the suboptimality are also bounded in [0, 1].

In our theoretical analysis, for simplicity, we assume that
`rev = `

(1)
pap = `

(2)
pap = 1, leaving this implicit in f , Q, and

Q∗ throughout the paper. We also assume m = (1 + β)n in
our analysis unless specified otherwise, so that |R2| = βn.
The intuition behind our results carries over to the cases of
general loads and excess reviewers, which are covered by our
empirical results in Section 5.1. Although we do not extend
our theoretical results to formally handle these cases, we
do not believe that doing so would provide any additional
practical insights for program chairs. All asymptotic bounds
are given as n grows.

4 Hardness
In the two-phase setting, the oracle optimal assignment is
unachievable becauseR2 must be chosen before observing
P2. Therefore, conferences must chooseR2 to maximize f ,
the expected mean similarity of the assignment across both
stages. In this section, we demonstrate that maximizing a
variant of f is NP-hard, indicating that it is unlikely that f
can be optimized efficiently.

First, note that evaluating f(R2) requires computing an
expectation over the draw of P2, which naively requires eval-
uating a sum over the optimal assignment value for

(
n
βn

)
possible choices of P2. This number is exponential in the
input size, so an efficient algorithm for this problem would
have to either optimize f without evaluating it or compute
this expectation without computing the optimal assignment
for each possible P2.

Instead of attempting to optimize f exactly, a standard ap-
proach from two-stage stochastic optimization is to simplify
the problem by sampling as follows (Dai, Chen, and Birge
2000; King and Rockafellar 1993). First, take some fixed
number of samples P(1)

2 , . . . ,P(K)
2 from Uβn(P). Then,

rather than optimizing an average over all P2 in the sup-
port of Uβn(P), chooseR2 to optimize an average over only
all sampled sets:

f(R2) =
1

K

K∑
i=1

Q(R2,P(i)
2 ).

This is a natural simplification of the two-stage paper assign-
ment problem, because the sum in the objective is now taken
over only a constant K subsets rather than an exponential
number. However, this problem is still not efficiently solvable,
as the following theorem shows.

Theorem 1. It is NP-hard to findR2 ⊆ R such that f(R2)
is maximized, even when K = 3.

Proof sketch. We reduce from 3-Dimensional Match-
ing (Karp 1972), which asks if there exists a way to select
k tuples from a set T ⊆ X × Y × Z where |X| = |Y | =
|Z| = k such that all elements of X , Y , and Z are selected
exactly once. We construct 3 samples of second-stage papers
corresponding to X , Y , and Z respectively, and construct
reviewers corresponding to elements of T . These reviewers
have 1 similarity with the papers in their tuple, and 0 sim-
ilarity with all other papers. Thus, checking if there exists
a choice of R2 which gives full expected similarity in the
second stage would require solving 3-Dimensional Matching.
We add additional reviewers and papers to ensure that this
choice ofR2 is optimal over both stages.

The full proof is presented in Appendix D.1.
Since it is NP-hard to find the optimal R2 even when es-

timating the objective by sampling three random choices of
P2, this suggests that the original objective f may be hard
to optimize efficiently. Therefore, in the two-phase assign-
ment setting, we instead look for efficient approximation
algorithms.

5 Our Approach: Random Split
Our proposed approach for finding a two-stage assignment
is extremely simple: choose R2 uniformly at random (i.e.,
R2 ∼ Uβn(R)). We refer to this as a “random split” of
reviewers into the two review stages.

In the two-phase setting, random split is an efficient approx-
imation algorithm for the problem of optimizing f , which is
likely difficult (as shown in Section 4). Because random split
does not execute f , it produces a two-stage paper assignment
without needing to estimate f by sampling.

In the conference experiment design setting, our pro-
posed random-split strategy corresponds to a uniform random
choice of reviewers for the experimental condition. Recall
that in this setting, assigning reviewers to conditions uni-
formly at random is already a common experimental setup.
The performance of random split on f therefore indicates how
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well this common setup performs in terms of the expected
assignment similarity.

In our theoretical results, we often refer to the suboptimal-
ity of random split, defined as the suboptimality ofR2 chosen
via random split when P2 is chosen uniformly at random:

Q∗(P2)−Q(R2,P2),

where P2 ∼ Uβn(P),R2 ∼ Uβn(R). (1)

Recall from Section 3 that Q∗(P2) is the mean similarity
of the oracle optimal assignment given second-stage papers
P2 and that Q(R2,P2) is the mean similarity of the optimal
assignment given second-stage reviewers and papersR2,P2.
Additionally, many of our results evaluate the expected mean
similarity under random split:

ER2∼Uβn(R) [f(R2)]

= ER2∼Uβn(R),P2∼Uβn(P) [Q(R2,P2)] .

In the following subsections, we first elaborate on the
good performance random split displays empirically before
showing that there exist cases where random split performs
very poorly.

5.1 Empirical Performance
As introduced earlier in Figure 1, random split performs very
well in practice on four real conference similarity matrices.
The first is a similarity matrix recreated using text-matching
on ICLR 2018 data (Xu et al. 2019). The second is con-
structed using reviewer bid data for an AI conference (confer-
ence 3) from PrefLib dataset MD-00002 (Mattei and Walsh
2013). The third (denoted Bid1) is a sample of the bidding
data from a major computer science conference (Meir et al.
2020). In both of these bidding datasets, we transformed
“yes,” “maybe,” and “no response” bids into similarities of 1,
0.5, and 0.25 respectively, as is often done in practice (Shah
et al. 2018). The fourth similarity matrix is constructed from
the subject areas of ACM SIGIR 2007 papers and the subject
areas of the past work of their authors (assumed to be the
reviewers) (Karimzadehgan, Zhai, and Belford 2008); we set
the similarity between each reviewer and paper to be equal
to the number of matching subject areas out of the 25 total,
normalized so that each entry of the matrix is in [0, 1]. In
Appendix A, we present further empirical results including
additional datasets. In Appendix B, we present additional
empirical results particularly relevant to the conference ex-
periment design setting.

We run several experiments, each corresponding to a
choice of dataset and β. Each experiment consists of 10 trials,
where in each trial we sample a random reviewer split and
a set of second-stage papers. We then present the range of
assignment values achieved across the trials as percentages of
the oracle optimal assignments for each trial. The oracle opti-
mal assignment for a trial is found by choosing the optimal
assignment of reviewers across both stages after observing
P2. We set paper loads of 2 in each stage (as done in AAAI
2021), and limit reviewer loads to be at most 6 (a realistic
reviewer load (Shah et al. 2018)). Since these datasets have
excess reviewers, we chooseR2 to have size β

1+βm so that

the proportions of reviewers and papers in the second stage
are equal.

In Figure 1a, P2 is drawn uniformly at random in each
trial (as in the problem formulation). We see that all trials
of random split achieve at least 90% of the oracle optimal
solution’s similarity on all datasets, with all trials on all but
two experiments achieving at least 94%. We see additionally
that the randomness of the reviewer choice does not cause
much variance in the value of the assignment, as there is at
most a 5% difference between the minimum and maximum
similarity (as a percentage of oracle optimal) for each experi-
ment. Note that this is true despite the fact that the similarity
matrices of the different datasets are constructed in several
different ways, indicating that random split is robust across
methods of similarity construction.

In Figure 1b, P2 is chosen as a fixed set for all trials based
on the actual review scores received by the papers at ICLR
2018 (He 2020) (as review scores were not available for other
datasets). We run trials where either the top-scoring papers
or the messy-middle papers are given additional reviews.
Since about 37% of papers were accepted, we define the
messy middle as the range of β

1+βm papers centered on the
63rd-percentile paper when ordered by score. These are sets
of papers that a conference may potentially want to assign
additional reviewers to. In all cases, random split shows con-
sistently good performance, similar to when P2 was drawn
uniformly at random. All trials achieve at least 95% of the
oracle optimal similarity, with at most a 2% difference be-
tween the minimum and maximum for each experiment. This
suggests that the good performance of random reviewer split
naturally holds in these practical cases.

5.2 A Counterexample
The good results random split shows in practice may be
somewhat surprising because random split does not perform
well in all settings. The following theorem shows that for any
β, there exist instances of the two-stage paper assignment
problem where the suboptimality of random split (1) is Ω(1)
in expectation.

Theorem 2. For any constant β ∈ [0, 1], there exists n0 such
that for all n ≥ n0 where βn ∈ Z+, there exist instances of
the two-stage paper assignment problem where the subopti-
mality of random split is at least β4

(1+β)3 in expectation.

Proof sketch. Consider β = 1. We construct a similarity
matrix where every reviewer has similarity 1 with only 1
paper, and all papers have similarity 1 with only 2 reviewers.
The optimal reviewer split puts the two good reviewers for
each paper in separate stages and always achieves a mean
similarity of 1. Random split puts both good reviewers in the
same stage with at least constant probability for each paper,
giving a constant mean similarity < 1.

The full proof is presented in Appendix D.2.
Note that the above lower bound on the objective value of

random split holds even in the easy case of β = 1, where
the problem could be solved simply through standard pa-
per assignment methods. This case is particularly relevant
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in the conference experiment setting, where all papers are
commonly reviewed under both conditions (as in the WSDM
2017 experiment).

Although the above lower bound demonstrates that ran-
dom split cannot hope to do well in general, the constructed
example is unrealistic for real conferences. However, pro-
gram chairs may understandably want some guarantee that
a random reviewer split will work well for their conference
before deciding to use it. Ideally, this guarantee should be
given before the precise similarity matrix for the conference
is known, since the similarities may not be known in full until
late in the planning process.

In the following sections, we provide such guarantees,
thereby showing that the good performance of random split
is not just an artifact of our specific datasets. We focus our
attention on two sufficient conditions on the similarity matrix
under which we show random split performs well. These con-
ditions are natural for real similarity matrices, implying that
random split will perform well for many real conferences,
whether in the context of a two-phase review process or a
conference experiment. Using these conditions, we provide
actionable insights to program chairs based on simple prop-
erties of their conference’s similarities that they may have
intuition about. These insights are designed to be useful well
before the full paper and reviewer sets are known.

6 Condition 1: Low-Rank Similarity Matrix
The first condition we consider is that the similarity matrix
S has low rank k. This condition naturally arises in prac-
tice when reviewer-paper similarities are calculated from the
number of subject area agreements between reviewers and
papers; in such cases, the rank is no greater than the number
of subject areas. For example, the SIGIR similarity matrix
used in Figure 1 is constructed in this way and thus has rank
no greater than 25 (the number of subject areas). In this sec-
tion, we provide asymptotic upper and lower bounds on the
suboptimality of random split for constant-rank similarity
matrices.

6.1 Theoretical Bounds
We first provide an upper bound on the suboptimality of
random split (1). This shows that random reviewer splits
perform well on constant-rank similarity matrices, including
the SIGIR similarity matrix examined earlier. More precisely,
the following theorem shows that if the similarity matrix S
has constant rank k, the suboptimality of random split is at
most Õ(n−

1
2 ) when k = 1, Õ(n−

1
2+o(1)) when k = 2, and

Õ(n−
1
k+o(1)) when k ≥ 3 with high probability.

Theorem 3. Consider any constants β ∈ [0, 1] and k ∈
Z+. There exists n0 and constants C, η such that, for any
n ≥ n0 where βn ∈ Z+ and for any similarity matrix S ∈
[0, 1](1+β)n×n of rank k, the suboptimality of random split
is at most:
• C(log n)ηn−

1
2 if k = 1

• C(log n)ηn−
1
k+

1
log log n if k ≥ 2

with probability at least 1− 1
n (where log indicates the base-2

logarithm).

Proof sketch. By Lemma 4 of (Rothvoss 2014), a rank k
similarity matrix S ∈ [0, 1]m×n can be factored into vectors
ur ∈ Rk for each r ∈ R and vp ∈ Rk for each p ∈ P such
that Srp = 〈ur, vp〉, ||ur||2 ≤ k1/4, and ||vp||2 ≤ k1/4. We
cover the k-dimensional ball containing all paper vectors with
smaller cells, and consider a reviewer to be in one of these
cells if the oracle optimal assignment (given P2) assigns it to
a paper in that cell. Using a concentration inequality on the
number of reviewers and papers in each cell in each stage,
we can upper bound the number of reviewers that we cannot
match to papers within the same cell. We then increase the
size of the cells and attempt to match the remaining reviewers
in this way, continuing until all reviewers are matched. We
upper bound the suboptimality of the resulting assignment
by the L2 distance between a reviewer’s assigned paper and
the paper they are assigned by the oracle optimal assignment.

The constants C and η may depend on k, which is itself
assumed to be constant. The full proof is presented in Ap-
pendix D.3.

For constant-rank similarity matrices, the suboptimality
diminishes as n grows, unlike when the rank of the similarity
matrix is unrestricted. Conceptually, our proof technique of
finding a minimum-distance matching between two samples
of points resembles the optimal transport problem solved
when finding the Wasserstein distance between a probabil-
ity distribution and its empirical measure. Thus, our upper
bounds nearly match those found in the literature on the
expected empirical 1-Wasserstein distance for continuous
measures (see (Panaretos and Zemel 2019) and references
therein).

We now complement the above upper bound with lower
bounds on the suboptimality of random split (1) for constant
rank similarity matrices. The following theorem shows that,
for similarity matrices of constant rank k, the suboptimality
of random split is Ω(n−1/2) in expectation and Ω(n−2/k)
with high probability.
Theorem 4. Suppose β = 1. For any constant k ∈ Z+, there
exists n0 and constants C, ζ such that for all n ≥ n0:

(a) There exist instances of the two-stage paper assignment
problem with similarity matrices S ∈ [0, 1]2n×n of rank
k such that the suboptimality of random split is at least
Cn−1/2 in expectation.

(b) There exist instances of the two-stage paper assignment
problem with similarity matrices S ∈ [0, 1]2n×n of rank
k such that the suboptimality of random split is at least
Cn−2/k with probability 1− ζe−n/10.

Proof sketch. (a) We construct k groups of reviewers and
papers, where all reviewers and papers in the same group
have similarity 1 with each other and similarity 0 with all
other reviewers/papers. The first group contains n

2 papers
and n reviewers. The optimal reviewer split puts half of each
group’s reviewers in each stage and assigns all reviewers to
papers with similarity 1. By an anti-concentration inequality,
with constant probability, at least Ω(

√
n) reviewers in the

first group cannot be assigned to a paper in their group under
random split.
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(b) We construct a vector in Rk for each reviewer and each
paper and set the similarity between that reviewer and that pa-
per to be the inner product of their corresponding vectors. We
place one paper vector and two reviewer vectors at each point
in an evenly-spaced grid throughout the cube [0, 1/

√
k]k. The

resulting similarity matrix has rank k. The optimal assign-
ment assigns the two reviewers at each point to the paper at
that point. With high probability, random split places Ω(n)
pairs of reviewer vectors into the same stage. One of each of
these reviewer pairs must be assigned to a paper at a different
point, which is at least Ω(n−1/k) away in L2 distance. The
suboptimality of the resulting assignment can be written in
terms of the total squared L2 distance between each reviewer
and their assigned paper, giving the stated bound.

The constants C and ζ may depend on k, which is itself
assumed to be constant. The full proof is presented in Ap-
pendix D.4.

6.2 Interpretation of Results

As discussed earlier in this section, certain methods of con-
structing similarities (such as counting subject area agree-
ments) may inherently lead to low-rank similarity matrices.
If a conference is using such a method, the results in this
section provide guarantees to the program chairs that random
split will perform well, particularly if the rank of the matrix
is low compared to the number of papers and reviewers. Al-
ternatively, program chairs may be able to estimate that their
reviewers and papers can be grouped into a small number of
communities with little variation within them, in which case
the similarity matrix may also be low rank.

7 Condition 2: High-Value, Large-Load
Assignment

A natural condition on the similarity matrix to consider is
that each paper has a large number µ of reviewers with high
similarity for that paper. It turns out that this condition is in-
sufficient for guaranteeing good performance of random split,
since the same group of µ reviewers could have high simi-
larity with all papers, thus satisfying this condition without
changing the assignment value by much (since we can only
assign these reviewers to a few papers). In this section, we
consider a condition on the similarity matrix that is similar
in spirit: the existence of a high-value assignment (in terms
of total similarity) on the full reviewer and paper sets where
each paper is assigned a large number (1 + β)µ of review-
ers. Our proposed condition handles the issue with the naive
“large number of reviewers” condition by requiring that the
high-value reviewers for each paper can all be simultaneously
assigned.

In the following subsections, we first provide theoretical
guarantees about the performance of random split under this
condition. We then demonstrate that this condition helps to
explain the good performance of random split on the real
similarity matrices presented earlier.

7.1 Theoretical Bounds
The first result of this section gives a lower bound on the
expected value of random split in terms of the value of a
single, large-load assignment. All results in this section still
hold if there are excess reviewers (i.e., if m ≥ (1 + β)n and
R2 ∼ U β

1+βm
(R)).

Theorem 5. Consider any µ ∈ [10, 000] and β ∈{
1

100 , . . . ,
100
100

}
such that βµ ∈ Z+. If there exists an assign-

ment A(µ) ∈ M(R,P;µ, (1 + β)µ) with mean similarity
s(µ), choosingR2 via random split gives that
ER2

[f(R2)] ≥

s(µ)

[
1−

√
β

2π(1 + β)2µ

(
2

√
1

1 + β
+
√

1− β
)]

.

A similar bound holds when βµ is not integral, with some
additional small terms due to rounding.

Proof sketch. We construct assignments with paper and re-
viewer loads of at most µ in stage one and at most βµ in
stage two using the reviewer-paper pairs assigned by A(µ).
We drop any extra assignments at random so that no reviewers
and papers are overloaded, and assume any pairs that must be
assigned from outside of A(µ) have similarity 0. From within
each of these larger assignments, we can find an assignment
with paper and reviewer loads of 1 with at least the same
mean similarity. The expected mean similarity of these as-
signments can be written as the expectation of a function of
binomial random variables. Approximating these by normal
random variables and checking via simulation that this is in
fact a lower bound for the stated values of β and µ, we get
the stated bound.

The more general version of the bound and the full proof
are stated in Appendix D.5.

The above bound works well when the reviewer-paper
pairs in the large-load assignment are all nearly equally valu-
able. However, it cannot take advantage of the fact that certain
reviewers may be extremely valuable for a certain paper and
can be prioritized for assignment to that paper when possible.
The next result uses additional information about the value of
an assignment with smaller loads, along with a large-load as-
signment disjoint from the small assignment, to make use of
these highly valuable reviewer-paper pairs in the case where
β = 1. Recall from Section 5.2 that β = 1 is still not an easy
case for random split in general and is particularly relevant
for the conference experiment setting.
Theorem 6. Suppose β = 1, and consider any µ ∈ [10, 000]
such that µ4 ∈ Z+. Suppose there exists an assignmentA(1) ∈
M(R,P; 1, 2) with mean similarity s(1). Suppose there also
exists an assignment A(µ) ∈ M(R,P;µ, 2µ) with mean
similarity s(µ) that does not contain any of the pairs assigned
in A(1). Then, choosingR2 via random split gives that

ER2
[f(R2)] ≥ 3

4
s(1) +

(
1− 1.44

√
µ

)
1

4
s(µ).

A similar bound holds when µ
4 is not integral, with some

additional small terms due to rounding.
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(b) PrefLib3
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(c) Bid1

Figure 2: Performance of the “high-value large-load” bounds on real conference datasets, β = 1. On the x-axis we vary the
parameter µ, which determines the loads of the assignment A(µ) used in the bound. The best setting of µ for each bound is
circled.

Proof sketch. We first attempt to assign as many pairs as
possible from within A(1); in expectation we can assign 3

4
of them. Among the remaining reviewers and papers, we
attempt to construct assignments with paper and reviewer
loads of µ

4 in both stages from within the reviewer-paper
pairs assigned by A(µ). This is done in a similar way as in
Theorem 5.

The more general version of the bound and the full proof
are stated in Appendix D.6.

If we consider A(1) as the optimal assignment and assume
that µ is divisible by 4, we get an approximation ratio (be-
tween the random split assignment and oracle optimal assign-
ment’s similarities) of 3

4 +
γµ
4

(
1− 1.44√

µ

)
where γµ = s(µ)

s(1)
.

With µ = 8, we achieve an approximation ratio of at least
3
4 + γ8

8 . Additionally, if γµ → 1 as n grows for any µ = ω(1),
the suboptimality of random split (1) approaches 0. For ex-
ample, this means that the suboptimality of random split
approaches 0 as n grows if the mean similarity of an assign-
ment with paper loads of log n improves faster than the mean
similarity of the optimal assignment.

7.2 Empirical Evaluation
We now show the performance of these bounds on our real
conference datasets in order to evaluate the extent to which
they explain the good performance of random split. We use
three of the conference datasets introduced earlier with β = 1.
In Appendix A, we evaluate the bounds on additional datasets
(including the SIGIR dataset). On PrefLib3 and Bid1, the
problem is infeasible with paper and reviewer load constraints
of 1 since m < 2n, so we modify the datasets by splitting
each reviewer into 3 copies as follows. For each paper, we
arbitrarily give one of the copies the same similarity as the
original reviewer and give the other copies similarity 0. In
this way, the similarity of the optimal assignment on this mod-
ified dataset is no greater than the similarity of the optimal
assignment on the original dataset.

In Figure 2, we vary the value of the parameter µ (indicat-
ing the loads of the assignment A(µ)) and show the bounds
of Theorem 5 and Theorem 6 as compared to the estimated
expected value of random split. The estimated expected value
is averaged over 10 trials with the standard error of the mean
shaded, although it is sometimes not visible because it is
small. We see that on these datasets, the bound of Theorem 5
performs best for low values of µ and not very well for higher
values, likely due to the presence of a few “star” reviewers
for each paper which hold a lot of the value. By making use
of extra information about the values of these reviewers, the
bound of Theorem 6 achieves a high fraction of the actual
random split value. Although this bound is maximized at
large values of µ on these datasets, it is close to its maxi-
mum even with reasonably low values of µ. For example,
on ICLR, the lower bound achieves 86% of the estimated
expected value of random split with µ = 8. This indicates
the good performance of random split is explained well by
the presence of just a few good reviewers per paper that can
be simultaneously assigned.

7.3 Interpretation of Results
Although our results in this section are stated in terms of
the precise values of high-load assignments, they can be in-
terpreted by program chairs in a simple and practical way.
Roughly, our results indicate that if several good reviewers
can be simultaneously assigned to each paper (as was the
case for the three conference similarity matrices in Figure 2),
random split will perform well. When considering the poten-
tial performance of randomly splitting reviewers, program
chairs should consider the reviewer and paper pools they
expect to have at their conference and make a judgement
about how many good-quality reviewers they think could
be assigned to each paper (if the reviewer loads are scaled
up proportionately). For example, the program chairs of a
large AI conference might be confident that the top several
reviewers for each paper are about equally valuable (due to
the depth of the reviewer pool) and could be assigned to each
paper with only a modest loss in average review quality; this
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would imply that random split would perform very well for
this conference.

8 Conclusion

We showed that randomly splitting reviewers between two
reviewing phases or two reviewing conditions produces near-
optimal assignments on realistic conference similarity ma-
trices. Our analysis of this phenomenon can help future pro-
gram chairs make decisions about whether random split will
work well for their conference’s two-phase review process,
based on their assessment of whether a few simple condi-
tions are applicable to their case. In the setting of conference
experiment design, our analysis allows program chairs to
understand if running an experiment on their review process
will significantly impact their assignment quality.

In addition, our results can potentially be further general-
ized to related reviewing models such as those of academic
journals (which accept submissions on a rolling basis), or to
other multi-stage resource allocation problems that involve
matching resources based on similarities. For example, dat-
acenters receiving a large batch of jobs may have to select
some to run on various servers immediately and some to
run later when additional servers have been freed, or hospi-
tals may want to assign nurses to shifts based on expertise
but without knowledge of which expertise will be most ap-
plicable in later shifts. Within the field of human computa-
tion, researchers may want to run experiments in real-world
task-assignment settings where maintaining a high-quality
assignment of tasks to participants is important.

One limitation of our work is that while our empirical re-
sults demonstrate the effectiveness of the random-split strat-
egy with real conference data, our theoretical results make
the simplifying assumption that paper and reviewer loads
are 1, which is unrealistic for real conferences. However,
we believe that incorporating this detail would not change
our explanations for the good performance of random split.
Another limitation is that we assume the set of papers re-
quiring reviews in the second stage is drawn uniformly at
random. Although this is a reasonable belief without further
information in the two-phase setting, one direction for future
work is to consider non-uniform distributions of second-stage
papers and analyze if a form of random split still performs
well there.

Our work could potentially produce negative outcomes
in the form of worse paper assignments if program chairs
decide to use random split on an incorrect belief that their
conference will fit our conditions. However, program chairs
are required to make such decisions about how to perform the
paper assignment anyway, so this is not a significant increase
in risk. The use of random reviewer splits, as opposed to
some alternate strategy where reviewers can self-select their
stage, could also negatively impact reviewers with strong
preferences over which stage they review in (e.g., due to
schedule constraints). These preferences should ideally be
taken into account along with the similarity of the resulting
assignment when choosing the reviewer split; we leave this
as an interesting direction for future work.
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