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Abstract
Strategic behavior is a fundamental problem in a variety of
real-world applications that require some form of peer as-
sessment, such as peer grading of homeworks, grant proposal
review, conference peer review of scientific papers, and peer
assessment of employees in organizations. Since an individ-
ual’s own work is in competition with the submissions they
are evaluating, they may provide dishonest evaluations to in-
crease the relative standing of their own submission. This is-
sue is typically addressed by partitioning the individuals and
assigning them to evaluate the work of only those from differ-
ent subsets. Although this method ensures strategyproofness,
each submission may require a different type of expertise for
effective evaluation. In this paper, we focus on finding an
assignment of evaluators to submissions that maximizes as-
signed evaluators’ expertise subject to the constraint of strat-
egyproofness. We analyze the price of strategyproofness: that
is, the amount of compromise on the assigned evaluators’ ex-
pertise required in order to get strategyproofness. We estab-
lish several polynomial-time algorithms for strategyproof as-
signment along with assignment-quality guarantees. Finally,
we evaluate the methods on a dataset from conference peer
review.

1 Introduction
Many applications require evaluation of certain submissions.
When the number of submissions is large enough to make
independent expert evaluations of all of them infeasible, the
individuals who submitted are each asked to evaluate sub-
missions made by their peers. In education, peer grading
of homeworks has become increasingly prevalent in Mas-
sive Open Online Courses (MOOCs) (Shah et al. 2013;
Dı́ez Peláez et al. 2013; Piech et al. 2013) and conven-
tional classrooms. In scientific research, peer review is used
for grant proposals and conference paper submissions (Shah
et al. 2017; Tomkins, Zhang, and Heavlin 2017; Shah 2021).
In the workplace, peer evaluation is frequently used to assess
employee performance and determine employee promotions
and bonuses (Wexley and Klimoski 1984; Fiore and Souza
2021).

In many of these applications, peer assessment is compet-
itive, meaning that the eventual outcome of a submission is
impacted by the evaluations of other submissions. Examples
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include a class graded on a curve such that only a certain
percentage receives an ‘A’ grade, a conference that intends to
accept some fixed fraction of the papers, an agency awarding
grants under a certain budget, or a company with a limited
number of promotions on offer.

A key challenge in competitive peer assessment is that
agents behave strategically: an agent may give low scores
to the submissions they evaluate, in the hope that by hurt-
ing the chances of those submissions, they increase the rel-
ative chance of a good outcome for their own submission.
A controlled experiment (Balietti, Goldstone, and Helbing
2016) found that people indeed behave in such a strategic
manner in competitive peer assessment. Furthermore, the
work (Thurner and Hanel 2011) shows that even a small
fraction of agents behaving strategically in scientific peer
review can significantly lower the average quality of the
accepted papers. It is thus vital to ensure the fairness and
integrity of the process by developing mechanisms to pre-
vent such strategic behavior. In fact, the NSF briefly experi-
mented with a method (introduced by (Merrifield and Saari
2009)) that attempts to prevent strategic behavior in the peer
review of research proposals (Naghizadeh and Liu 2013),
but this method does not come with theoretical guarantees.

By far the most well-studied way of ensuring strate-
gyproofness is the partitioning method introduced in (Alon
et al. 2011) and studied further in (Holzman and Moulin
2013; Bousquet, Norin, and Vetta 2014; Fischer and Klimm
2015; Aziz et al. 2016, 2019; Mattei, Turrini, and Zhydkov
2020; Kahng et al. 2018; Xu et al. 2019). Under the parti-
tioning method, submissions are partitioned into some num-
ber of subsets, and no agent is assigned a submission from
the same subset as their own. The individual agent evalua-
tions are then aggregated separately for each subset, so that
any agent’s evaluations cannot influence the final outcome
for their own submission.

Apart from strategyproofness, another key aspect in as-
signing evaluators to submissions is matching based on ex-
pertise. For instance, in peer review of papers or proposals,
not all agents have expertise for all papers or proposals. Sim-
ilarly, in peer assessment within an organization, the peer as-
sessors for any employee must be chosen to have a suitable
understanding of that employee’s work. In peer grading of
essays or projects, the assessors must have the relevant back-
ground to do a suitable evaluation. Since the goal of peer as-
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sessment is to evaluate each submission as competently as
possible, it is important to ensure that each submission is as-
signed evaluators with suitable expertise, or in other words,
to maximize the quality of the assignment of evaluators to
submissions.

As both strategyproofness and assignment quality are cru-
cial in many applications, our work studies the problem of
finding a strategyproof assignment with maximum assign-
ment quality. The key question we ask is: what is the price
paid by strategyproofing in terms of the assigned evaluators’
expertise? As a metric of evaluation, we use the ratio of the
quality we obtain with strategyproofness to the maximum
quality achievable without the strategyproofness constraint.

Our work contributes to the body of literature on analyz-
ing the price of strategyproofness in various settings (Pro-
caccia and Tennenholtz 2013; Dughmi and Ghosh 2010;
Koutsoupias 2014; Ashlagi et al. 2015; Kahng et al. 2018).
This includes a line of work on impartial peer nomi-
nation/selection (Alon et al. 2011; Bousquet, Norin, and
Vetta 2014; Holzman and Moulin 2013; Aziz et al. 2016;
Kurokawa et al. 2015; Fischer and Klimm 2015; Aziz et al.
2019; Mattei, Turrini, and Zhydkov 2020), which focuses on
selecting the best k submissions in a strategyproof manner
given an profile of evaluations. In contrast, we optimize the
assignment of evaluators to submissions subject to a strate-
gyproofness constraint and characterize the price of strate-
gyproofness in terms of the assigned evaluators’ expertise.
Further, our setting generalizes the standard peer selection
setting, since evaluations may be used for various relative
grading schemes other than best-k selection. The prior work
closest to ours is (Xu et al. 2019), which considers the parti-
tioning mechanism specifically for conference peer review.
They provide an algorithm that utilizes partitioning and con-
duct empirical analysis on its quality. However, their algo-
rithm is designed to guarantee that the output ranking of sub-
missions satisfies an efficiency property and does not focus
on optimizing the evaluator assignment.

With that background, we now list our main contribu-
tions:
1. We establish fundamental limits on the amount of com-

promise that must be made on the assignment quality in
order to impose strategyproofness via partitioning.

2. We present polynomial-time computable algorithms that
are optimal in the worst case.

3. We show that the problem of instance-wise optimal strat-
egyproof assignment via partitioning is NP-hard.

4. We conduct experimental evaluations on data from the
peer-review process of the ICLR 2018 conference, where
we find that our algorithms achieve high-expertise as-
signments while producing fair partitions of papers.

We accomplish these goals using various techniques: ap-
plying combinatorial methods, drawing a connection to eq-
uitable graph coloring, and formulating our problem as a
max-cut problem.

Apart from considering strategyproofness and assignment
quality together, we note two points of contrast of our work
as compared to the literature. First, previous works on strat-
egyproof partitioning consider a uniform random partition

in order to ensure fairness: that is, to ensure that no par-
tition contains disproportionately strong or disproportion-
ately weak submissions. In our work, we analyze the ran-
dom partition approach and use it as a baseline for the
rest of our results. Moreover, we conduct experiments us-
ing data from the ICLR conference, which reveal that the
non-random partition output by our algorithms does not re-
sult in any substantial unfairness. Second, the work (Xu
et al. 2019), which deals with both assignment quality and
strategyproofing, considers arbitrary authorships where each
submission may have multiple authors and each agent may
have authored multiple submissions. In contrast, our theo-
retical analysis restricts attention to each agent having au-
thored one submission and each submission being authored
by one agent. Such one-to-one authorship occurs often in
peer grading, peer assessment of employees, or peer review
of certain proposals, and is equivalent to common settings in
the strategyproofing literature (Alon et al. 2011; Bousquet,
Norin, and Vetta 2014; Holzman and Moulin 2013; Aziz
et al. 2016; Kurokawa et al. 2015; Fischer and Klimm 2015;
Aziz et al. 2019; Mattei, Turrini, and Zhydkov 2020; Kahng
et al. 2018). In Section 5, we further provide an extension
and empirical evaluation that handles arbitrary authorships.

The full version of the paper can be found online,1 as can
all of the code for our algorithms and our empirical results.2

2 Background and Problem Formulation
We consider a setting of peer assessment between agents,
where each agent first submits some work for evaluation
and is then assigned to evaluate other agents’ submissions.
After evaluations have been completed, submissions can be
compared based on the evaluation scores in order to deter-
mine any competitive outcomes, such as relative grades (in
a classroom setting), accept/reject decisions (in conference
peer review), or employee bonuses and promotions (in an
organization).

Preliminaries
Let A = {a1, . . . , an} be the set of agents and let P =
{p1, . . . , pn} be the set of submissions from the agents. We
assume that each agent ai (i ∈ [n]) authors exactly one
submission pi. (This is equivalent to common settings in
the strategyproofing literature (Holzman and Moulin 2013;
Bousquet, Norin, and Vetta 2014; Fischer and Klimm 2015;
Aziz et al. 2016; Kahng et al. 2018). Furthermore, we handle
arbitrary authorships in Section 5.)

A key focus of our work is the assignment of agents to
submissions for review. Constructing a high-quality assign-
ment for peer assessment (in the absence of strategyproof-
ing requirements) is a well-studied problem, and is con-
ducted in two phases. The first phase involves computing
a “similarity” between every agent-submission pair, a num-
ber between 0 and 1 where a higher value indicates a bet-
ter match in terms of expertise. Similarities are computed
in various ways (Charlin and Zemel 2013; Mimno and Mc-
Callum 2007; Fiez, Shah, and Ratliff 2020; Meir et al. 2020).

1https://arxiv.org/abs/2201.10631
2https://github.com/sjecmen/optimal strategyproof assignment
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Our work is agnostic to the method used to compute similar-
ity scores. We assume we are given a matrix S ∈ [0, 1]n×n

of ‘similarity scores’ for each agent-submission pair that
capture the expertise of each agent to evaluate each submis-
sion. For any i ∈ [n], j ∈ [n], the (i, j)th entry of matrix
S, denoted by si,j , represents the similarity between agent
ai and submission pj , where a higher value means that one
expects a better quality of evaluation.

Assignments

The second phase of the assignment process then uses the
similarities to assign submissions to agents. For a predefined
value k ∈ Z+, an assignment with loads of k is defined as a
setM ⊆ A× P of assigned agent-submission pairs where
each submission is assigned exactly k agents, each agent is
assigned to exactly k submissions, and no agent is assigned
to their own submission. It is important to note that in our ap-
plications of interest, the “load” k is typically a small con-
stant independent of n, and we will assume so throughout
this paper.

The assignment is chosen by maximizing a specified ob-
jective subject to the load constraints. By far the most com-
mon choice of objective is to maximize the sum of the as-
signed similarities (Goldsmith and Sloan 2007; Taylor 2008;
Tang, Tang, and Tan 2010; Charlin and Zemel 2013; Char-
lin, Zemel, and Boutilier 2011; Li and Hou 2016), and
this approach is widely used in practice: for instance, in
IJCAI, NeurIPS, AAAI and other conferences. Formally,
for any assignment M ⊆ A × P , the total similarity is
given by

∑
(ai,pj)∈M si,j . Fixing some k, defineM∗

S as the
maximum-similarity assignment

M∗
S = argmax

M⊆A×P

∑
(ai,pj)∈M

si,j (1a)

subject to
∑
ai∈A

I[(ai, pj) ∈M] = k ∀pj ∈ P

(1b)∑
pj∈P

I[(ai, pj) ∈M] = k ∀ai ∈ A

(1c)
(ai, pi) ̸∈ M ∀ai ∈ A.

(1d)

The optimal assignment (without strategyproofness) M∗
S

can be found efficiently via standard methods such as min-
cost flow algorithms or linear programming. Let OptS be the
similarity of M∗

S (leaving dependence on k implicit in the
notation); that is, OptS is the maximum value of the afore-
mentioned objective under the stated constraints. When un-
ambiguous, the subscript S may be omitted.

While we consider the aforementioned popular objective
in most of our analysis, we note that another objective that
is sometimes used is the leximin or max-min fairness of the
assignment (Garg et al. 2010; Stelmakh, Shah, and Singh
2019b), which we examine in Section 3.

Strategyproofness via Partitioning
Our goal in this paper is to find maximum-similarity strat-
egyproof assignments. A strategyproof assignment is one in
which no agent can improve the outcome of their own sub-
mission by changing the evaluation they provide.

As introduced earlier, a standard method for constructing
strategyproof assignments begins by partitioning the agents
into two subsets. An assignment of agents to submissions is
then found, where agents can only be assigned to submis-
sions authored by agents in the other subset. After evalu-
ations are completed, any relative grading (e.g., classroom
grading or accept/reject decisions) is done independently
within each subset. Thus, the evaluation provided by any
agent cannot influence the final outcome of their own sub-
mission.

In this paper, we use the term “strategyproof-via-
partitioning” specifically to describe assignments produced
in this way.

Definition 1. An assignment M is strategyproof-via-
partitioning if there exists a partition of A into two subsets
A1,A2 such that

(ai, pj) ̸∈ M ∀ai, aj ∈ At; ∀t ∈ {1, 2} (2a)
A1 ∪ A2 = A; A1 ∩ A2 = ∅. (2b)

In Section 3, we extend this definition to allow for par-
titioning into more than two subsets. Our goal is to find a
maximum-similarity strategyproof-via-partitioning assign-
ment

argmax
A1,A2⊆A;M⊆A×P

∑
(ai,pj)∈M

si,j

subject to (1b)− (1d), (2a), (2b).

If an assignment satisfies (2a) for some partition, we say
that assignment “respects” the partition; we say that a pair
(ai, pj) respects the partition if ai and aj are in different
subsets. Note that the load constraints imply |A1| = |A2|
for any feasible solution, so we assume that n is even in all
of our results; we also assume that k ≤ n

2 for feasibility.
Given a partition (A1,A2), finding the maximum-

similarity assignment can be done via standard methods by
additionally disallowing any pairs violating constraint (2a).
Thus, the primary question we consider in this paper is how
to optimally choose the partition in order to maximize the
similarity of the resulting assignment.

Evaluation Metric
We evaluate a strategyproof-via-partitioning assignment al-
gorithm in terms of the ratio between the similarity of the as-
signment it produces and OptS , the similarity of the optimal
non-strategyproof assignment. Specifically, consider any as-
signment algorithm that, given input similarities S, pro-
duces a strategyproof-via-partitioning assignment denoted
byMS . We evaluate its performance in terms of the worst-
case input similarities as:

min
S:OptS>0

∑
(ai,pj)∈MS

si,j

OptS
.
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Algorithm 1: Random Partition

Input: A, P , S, k
1: Sample A1 uniformly at random from {A′ : A′ ⊆
A, |A′| = |A|/2}

2: A2 ← A \A1

3: M ← max-similarity assignment with loads k respect-
ing (A1,A2)

4: return assignmentM and partition (A1,A2)

3 Theoretical Results
In this section, we present our main theoretical results.

Baseline: Random Partitioning
We begin with a result that provides a simple baseline for
comparison: Algorithm 1 chooses a partition uniformly at
random. This is the approach taken by most prior literature
on partitioning-based mechanisms. It is easy to show that
such a uniformly random partition can attain at least half of
the optimal similarity.

Proposition 1. For any k and any S, Algorithm 1 finds a
strategyproof-via-partitioning assignment with similarity at
least 1

2OptS in expectation.

Proof. Since it is feasible to assign all pairs inM∗
S that re-

spect the partition, Algorithm 1 achieves expected similarity

EM

 ∑
(ai,pj)∈M

si,j


≥

∑
(ai,pj)∈M∗

S

si,j(P[ai ∈ A1, aj ∈ A2]

+ P[aj ∈ A1, ai ∈ A2])

=
∑

(ai,pj)∈M∗
S

si,j

(
n

n− 1

)
1

2

≥ 1

2
OptS .

Note that this bound on the expected performance of
random partitioning is tight in the limit as n grows: in
the worst-case over similarities, Algorithm 1 achieves ex-
actly

(
n

n−1

)
1
2Opt similarity. This occurs when all agent-

submission pairs assigned byM∗ have similarity 1, and all
other pairs have similarity 0.

Worst-Case Upper Bound
Since 1

2Opt is easily attainable, the next natural question
is: how much better is achievable? We establish an upper
bound of k+1

2k+1Opt on the worst-case performance of any
strategyproof-via-partitioning assignment algorithm.

Theorem 1. For any k and any n, there exist similarities
S for n agents such that no strategyproof-via-partitioning
assignment has similarity greater than k+1

2k+1OptS .

Algorithm 2: Cycle-Breaking Algorithm

Input: Agents A, papers P , similarities S, load k

1: M̃∗
S ← max-similarity assignment with loads 1

2: A1 ← ∅; A2 ← ∅
3: for cycle γ of length ℓ in M̃∗

S do
4: y ← mini∈[ℓ] sγi,γi+1

5: A← ∅; B ← ∅
6: for i ∈ [ℓ] do
7: j ← y + i mod ℓ
8: if i odd then
9: A← A ∪ {aγj}

10: else
11: B ← B ∪ {aγj}
12: end if
13: end for
14: if |A1| ≤ |A2| then
15: A1 ← A1 ∪A; A2 ← A2 ∪B
16: else
17: A1 ← A1 ∪B; A2 ← A2 ∪A
18: end if
19: end for
20: M ← max-similarity assignment with loads k respect-

ing (A1,A2)
21: return assignmentM and partition (A1,A2)

Proof. Place the agents into groups of size 2k + 1, leav-
ing any remaining agents out. Within each complete group,
number the agents from 0 to 2k. For all i from 0 to 2k, set
the similarity of ai and pi+1, . . . , p(i+1+k) mod 2k+1 to 1.
Set all other similarities to 0. On these similarities,M∗ can
assign every similarity-1 pair, for a total of k(2k + 1) per
group. The optimal partition splits each group into subsets
of size k and k + 1, allowing at most k(k + 1) similarity-1
pairs to be assigned in each group.

Cycle-Breaking Algorithm
In this section, we present a simple algorithm that meets the
upper bound of Theorem 1 when k = 1.

Define a “cycle” γ of length ℓ in an assignment as an
ordered list of indices γ1, . . . , γℓ such that agent aγi

is as-
signed to submission pγi+1

(defining γℓ+1 = γ1). In any
assignment with loads k = 1, the full set of indices [n] can
be uniquely partitioned into such cycles, since each agent is
assigned to one submission and each submission is assigned
one agent.

Algorithm 2 works by splitting each cycle in the opti-
mal k = 1 assignment across the partition in the way that
maximizes similarity. The following theorem shows a lower
bound on the similarity of the strategyproof-via-partitioning
assignment produced by this algorithm when k = 1.

Theorem 2. When k = 1, for any S, Algorithm 2 finds a
strategyproof-via-partitioning assignment with similarity at
least 2

3OptS in polynomial time.

Proof. (A1,A2) is a partition of A since each agent is in-
cluded in exactly one cycle in M̃∗

S . Further, |A1| = |A2|
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Algorithm 3: Coloring Algorithm

Input: Agents A, papers P , similarities S, load k
1: M∗

S ← max-similarity assignment with loads k
2: GM∗ ← directed graph representingM∗

S
3: f ← equitable (2k + 2)-coloring of GM∗

4: for T ∈ {T : T ⊆ [2k + 2], |T | = k + 1} do
5: AT ← {ai : vi ∈ V, f(vi) ∈ T}
6: A′

T ← {ai : vi ∈ V, f(vi) ̸∈ T}
7: xT ←

∑
ai∈AT ,aj∈A′

T
si,jI[(ai, pj) ∈M∗

S ]

8: end for
9: T ∗ = argmaxT xT

10: A1 ← AT∗ ; A2 ← A′
T∗

11: M ← max-similarity assignment with loads k respect-
ing (A1,A2)

12: return assignmentM and partition (A1,A2)

since agents are added to the partition to keep it as balanced
as possible and we assume n is even.

We bound the value of the returned assignmentM when
k = 1. By construction, at most one agent-submission pair
in each cycle of M̃∗

S does not respect the partition. Any
cycle containing such a disallowed pair must be of length
at least three, and the disallowed pair must have the mini-
mum similarity among all assigned pairs in the cycle. Since
it is feasible to assign all pairs in M̃∗

S that respect the par-
tition, the value of the strategyproof-via-partitioning assign-
ment must be at least 2

3OptS .
The partitioning step can be done in O(n) time, since each

agent is considered once, and finding the two maximum-
similarity matchings can be done with high probability in
Õ(n3) time (van den Brand et al. 2021).

Coloring Algorithm
In this section, we present another algorithm for strate-
gyproof peer assessment, which meets the upper bound of
Theorem 1 for any k. The algorithm begins by constructing
a directed graph GM∗ representing the optimal assignment
M∗. This graph contains one vertex vi for all i ∈ [n], and
an edge (vi, vj) if (ai, pj) ∈M∗. We then find an equitable
coloring of this graph, which is defined as follows.

Definition 2. For any α ∈ Z+, an equitable α-coloring of
a directed graph G = (V,E) is a function f : V → [α]
such that f(vi) ̸= f(vj) ∀(vi, vj) ∈ E and |{v : f(v) =
x}| − |{v : f(v) = y}| ≤ 1 ∀x, y ∈ [α].

The following well-known result shows that an equitable
coloring of limited size can be found in polynomial time.

Theorem 3. (Hajnal and Szemerédi 1970; Kierstead et al.
2010) A graph G = (V,E) with maximum degree at most
∆ has an equitable ∆ + 1-coloring that can be found in
O(∆|V |2) time.

Algorithm 3 uses this result as a subroutine to find an eq-
uitable (2k+2)-coloring of GM∗ . It then partitions the col-
ors in the way that maximizes the total similarity of pairs in
M∗ split by the partition. The following result proves that
this algorithm is worst-case optimal.

Theorem 4. For any k and any S, if n is divisible by 2k+2,
Algorithm 3 finds a strategyproof-via-partitioning assign-
ment with similarity at least k+1

2k+1OptS in polynomial time.

Proof. Each vertex in GM∗ has in-degree and out-degree
k, so the maximum (total) degree is at most 2k. Therefore,
Line 3 can be implemented using Theorem 3 as a subroutine.
Further, since n is divisible by 2k+2, all colors have exactly

n
2k+2 vertices and so |A1| = |A2|.

Next, we bound the value of the returned assignmentM.
Suppose we modify Line 4 to choose T uniformly at ran-
dom from the set. Then, the expectation of xT in Line 7
is E [xT ] =

∑
(ai,pj)∈M∗

S
si,j

(
k+1

2(k+1)−1

)
= k+1

2k+1OptS .

Therefore, xT∗ ≥ k+1
2k+1OptS . Since it is feasible to assign

all pairs whose similarity is counted in xT∗ , the assignment
M has similarity at least xT∗ .

Assuming k is constant, the time complexity of the par-
titioning step is dominated by the O(n2) time taken to find
the equitable coloring. Finding the two maximum-similarity
matchings can be done with high probability in Õ(n3)
time (van den Brand et al. 2021).

The assumption that n is divisible by 2k + 2 is needed
to guarantee that the partition is balanced. However, for ar-
bitrary n, the subsets of the partition differ in size by only
k + 1 agents at most. If there are a small number of “re-
serve” agents who did not submit any work and are not used
inM∗, these agents can provide any evaluations needed for
a feasible assignment. Since k is a small constant (often
≤ 3), having access to enough reserve agents is likely not
an issue in practice. For example, in a scientific peer review
setting, many extra non-author reviewers are available; in a
classroom setting, an instructor could grade the extra sub-
missions.

Hardness
Although our algorithms are optimal on the worst-case in-
put, one might hope for algorithms that can guarantee opti-
mal performance on all inputs. However, the following result
shows that when k ≥ 2, this is NP-hard.

Theorem 5. For any k ≥ 2, it is NP-hard to find the op-
timal strategyproof-via-partitioning assignment, even when
similarities are binary (that is, when S ∈ {0, 1}n×n).

Proof Sketch. The proof is by reduction from the “Simple
Max Cut on Cubic Graphs” problem (Yannakakis 1978). We
construct an instance of the strategyproof-via-partitioning
assignment problem where each agent corresponds to a ver-
tex. For some orientation of the input graph, we set sij = 1
for each directed edge (vi, vj), and set similarities to zero
elsewhere. These edges could all be assigned byM∗ when
k ≥ 2, but the optimal strategyproof-via-partitioning as-
signment is limited to the max-cut value in the original
graph.

The complete proof is provided in Appendix A.
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Algorithm 4: Multi-Partition Algorithm

Input: Agents A, papers P , similarities S, load k
1: M∗

S ← max-similarity assignment with loads k
2: GM∗ ← directed graph representingM∗

S
3: f ← equitable (2k + 1)-coloring of GM∗

4: return assignmentM∗
S and partition with 2k+1 subsets

({aj : vj ∈ V, f(vj) = i}i∈[2k+1])

Partitions With More Than Two Subsets
We now relax the definition of “strategyproof-via-
partitioning” given in Definition 1. Rather than requiring
that agents be partitioned into two subsets, we allow them
to be partitioned into any constant (i.e., not depending on n)
number of subsets. This slight relaxation of our problem for-
mulation allows us to obtain a strategyproof-via-partitioning
assignment that achieves total similarity OptS for any S.

Theorem 6. For any k ≥ 1 and any S, Algorithm 4
finds a partition of agents into 2k + 1 subsets, where
each subset contains either ⌊ n

2k+1⌋ or ⌈ n
2k+1⌉ agents, and

a strategyproof-via-partitioning assignment respecting this
partition in polynomial time. This assignment has total sim-
ilarity OptS .

Proof. Each vertex in GM∗ has in-degree and out-degree
k, so the maximum (total) degree is at most 2k. Therefore,
by Theorem 3 we can find an equitable (2k + 1)-coloring
of GM∗ in O(n2) time. By Definition 2, the entirety of
M∗

S respects the partition induced by the coloring and so is
strategyproof-via-partitioning with respect to this partition.
Also by Definition 2, all color classes differ in size by at
most 1.

Algorithm 4 constructs a directed graph representingM∗

as described in Section 3. It then finds an equitable (2k +
1)-coloring using Theorem 3 and uses this coloring as the
partition.

Although we can recover the entire optimal similarity
with this method, increasing the number of subsets comes
at the cost of reliability in determining the post-evaluation
outcomes, since all relative outcomes must be chosen inde-
pendently in each subset. In Section 4, we experimentally
examine this cost.

Fairness Objective
So far we have analyzed the objective of maximizing total
similarity (1) due to its widespread use. However, this ob-
jective has been found to result in imbalanced or unfair as-
signments (Stelmakh, Shah, and Singh 2019b). An alterna-
tive proposed in the literature is to optimize the max-min
fairness objective, which maximizes the total similarity as-
signed to the submission with minimum assigned similar-
ity (Garg et al. 2010; Stelmakh, Shah, and Singh 2019b;
Kobren, Saha, and McCallum 2019). Formally, the problem
of finding the optimal strategyproof-via-partitioning assign-

ment under this objective is:

argmax
A1,A2⊆A;M⊆A×P

min
pj∈P

∑
ai∈A

si,jI[(ai, pj) ∈M]

subject to (1b)− (1d), (2a), (2b).

Assignment algorithms optimizing this objective have been
used in venues such as ICML 2020 and implemented in con-
ference management platforms such as OpenReview.net.

In this section, we analyze the price of strategyproofing
under this max-min objective. The following result shows
that unfortunately, we cannot hope to do well on this objec-
tive in the worst-case.

Theorem 7. For any k and any n ≥ 6, there exist similar-
ities S on n agents such that the optimal non-strategyproof
assignment has max-min objective value strictly greater
than 0 while no strategyproof-via-partitioning assignment
has a max-min objective value greater than 0.

Proof. Split the agents into two groups such that both
groups have an odd number of agents at least 3; this is
possible since we assume n is even. Within each group
{aγ1

, . . . , aγℓ
} of size ℓ, set similarities sγi,γi+1

= 1 for all
i ∈ [ℓ−1] and sγℓ,γ1 = 1. Set similarities to 0 elsewhere. On
these similarities, the optimal non-strategyproof assignment
can assign every similarity-1 pair for a max-min fairness of
1. However, since the number of reviewers in each group
is odd, any partition of A into two subsets must place two
agents aγi

, aγi+1
(or aγℓ

, aγ1
) from each group in the same

subset. Therefore, some submission pγi+1
from each group

will have an assigned similarity of 0.

4 Experimental Results
In this subsection, we experimentally examine the perfor-
mance of algorithms for strategyproof-via-partitioning as-
signment.

Setup
We evaluate our algorithms on data from the peer-review
process at ICLR 2018. We use similarities recreated in (Xu
et al. 2019). To evaluate the partition quality, we also use the
actual review scores and the accept/reject decisions at the
ICLR 2018 conference (He 2020).

Since our algorithms require that each agent authors
exactly one submission, we find a maximum one-to-one
matching on the real authorship graph and use this as the au-
thorship for our experiments. This resulted in matching 883
out of the 911 papers. We then discarded any reviewers and
papers not included in the authorship graph. Any additional
reviewers required for feasibility (due to the divisibility of
n) have zero similarity with all papers.

We evaluate four partitioning algorithms: random parti-
tioning (Algorithm 1), the cycle-breaking algorithm (Al-
gorithm 2), the coloring algorithm (Algorithm 3), and the
multi-partition algorithm (Algorithm 4). Since each paper
received 3 reviews at ICLR 2018, we test values of k ∈
{1, 2, 3}.

Additional experimental results are available in Ap-
pendix B.

58



1 2 3
k

0.0

0.1

0.2

0.3

0.4
Fr

ac
tio

n 
of

 o
pt

im
al

 s
im

ila
rit

y 
lo

st
random
cycle-breaking
coloring
multi-partition

(a) Assignment similarity lost

cycle-breaking coloring multi-partition
0

100

200

300

400

Fr
eq

ue
nc

y 
in

 s
ub

se
t

Oral
Poster
Workshop
Reject

(b) Partitioned paper decisions,
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(c) Partitioned paper decisions,
k = 3

2 4 6 8
Mean review score

0

10

20

30

40

50

Fr
eq

ue
nc

y 
in

 s
ub

se
t

(d) Partitioned paper scores for
the cycle-breaking algorithm, k = 1
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(e) Partitioned paper scores for
the coloring algorithm, k = 1
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(f) Partitioned paper scores for
the multi-partition algorithm, k = 1

Figure 1: Experimental results on data from ICLR 2018.

Assignment Similarity
We first examine the similarity of the strategyproof-via-
partitioning assignments produced by each algorithm. In
Figure 1a, we report the price of strategyproofness: the dif-
ference in total similarity between the proposed algorithm’s
assignment and the optimal non-strategyproof assignment,
as a fraction of the optimal assignment’s total similarity. Re-
sults for the random partitioning algorithm are averaged over
100 trials; error bars representing standard error of the mean
are too small to be visible. As expected from our theoret-
ical results, the multi-partition algorithm achieves the full
similarity of the optimal non-strategyproof assignment. On
all values of k, the cycle-breaking algorithm performs very
well: it loses less than 1% of the optimal similarity when
k = 1, and furthermore, it outperforms the coloring algo-
rithm even for higher values of k (where it does not have
theoretical guarantees). The coloring algorithm loses around
12% of the optimal similarity for all values of k. The base-
line of random partitioning still loses less than 20% of the
optimal similarity, but is outperformed by the other algo-
rithms. Overall, on real data our algorithms perform quite
well in terms of the quality of the assignment as compared
to the optimal non-strategyproof assignment.

Partition Quality
We next examine whether the partitions produced by
these algorithms place similar-quality papers into each sub-
set, since under the partition-based method, the final ac-

cept/reject decisions for papers are performed independently
in each subset. In Figures 1b and 1c, we display the number
of papers receiving each decision (oral presentation, poster
presentation, invitation to workshop track, or rejection) in
each subset of the partitions. For each algorithm, each bar
displays the decisions for the papers in one subset of the par-
tition. Across all algorithms and values of k, the partitions
constructed have very similar numbers of papers receiving
each decision in each subset. Since a very small number
of papers (23 out of 883) are accepted for oral presentation
overall, the relative difference in the number of oral papers
between subsets is sometimes large; however, the absolute
difference in the number of oral papers remains small.

Further, in Figures 1d, 1e, and 1f, we show the mean re-
view scores given to each paper for the case of k = 1. In
Figures 1d and 1e, the red and blue histograms correspond
to the scores given to the papers in the two subsets of the al-
gorithm’s partition, with the purple section indicating their
overlap; in Figure 1f, the third subset is additionally indi-
cated in yellow. For all algorithms, the distributions of scores
appear very similar across subsets of the partition. Formally,
we test the difference between the score distributions of dif-
ferent subsets via the two-sample Kolmogorov-Smirnov test,
a non-parametric test of the null hypothesis that the two sam-
ples came from the same distribution. Each sample is the set
of scores given to the papers in one subset of the partition.
We report the results of the test in Table 1, which contains
the p-values of the test along with the effect size D, defined
as the maximum difference between the empirical cdfs of
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Algorithm k p D

Cycle-breaking - 0.9007 0.0373
Coloring 1 0.8902 0.0379

2 0.6445 0.0487
3 0.5389 0.0530

Multi-partition 1 0.4282 0.0702
2 0.6805 0.0742
3 0.3457 0.1142

Table 1: Results of the Kolmogorov-Smirnov test of whether
the review scores in the two partitioned subsets are drawn
from the same distribution.

the two samples. For the multi-partition algorithm, we test
each pair of subsets and we report results for the pair with
highest D. In all cases, the p-values are high, meaning that
the test cannot reject the hypothesis that the subsets were
drawn from the same distribution.

These experiments provide evidence that the partitions
created by our algorithms do not have any substantial dif-
ference in the quality of papers in each subset.

5 Heuristic Algorithm for Arbitrary
Authorship

In this section, we propose an algorithm for strategyproof-
via-partitioning assignment that can accommodate arbitrary
authorship of submissions, as opposed to the one-to-one
authorship that we assume in our problem formulation
(Section 2). This algorithm is closely based on the cycle-
breaking algorithm (Algorithm 2) from Section 3. We do not
have any theoretical guarantees for this algorithm, but we
provide evaluations on the ICLR 2018 dataset introduced in
Section 4.

Algorithm
Arbitrary authorship can be represented as a graph U where
each agent and each submission are represented as vertices,
and an edge between an agent and submission indicates that
the agent authored that submission. Since authorship is not
one-to-one, the number of agents and submissions may dif-
fer and the agent and submission loads need not be the same.
Define kp as the paper load and ka as the maximum agent
load. A strategyproof-via-partitioning assignment algorithm
in this setting will produce a partition of both agents and sub-
missions, along with an assignment that respects this parti-
tion by assigning each submission only agents from the other
subset.

Algorithm 5 works by taking a problem instance with ar-
bitrary authorship, using it to construct a (fake) problem in-
stance with one-to-one authorship, and running Algorithm 2
on this fake instance to find a partition. Each agent in the
fake instance corresponds to a connected component of the
authorship graph U . Similarities between fake agents are
set equal to the total similarity of pairs in the optimal non-
strategyproof assignment that are split between the respec-
tive components. After construction, we pass this fake in-
stance into Algorithm 2.

We slightly modify Algorithm 2 to encourage more bal-
anced partitions in this setting before calling it in Line 7. In
Lines 14-18 of Algorithm 2, we take the larger of A and B
and add it to the smaller of A1 and A2 as measured by the
total number of papers in the connected components repre-
sented within each set. In addition, we iterate through ver-
tices (when finding cycles) in the order of largest connected
component to smallest, where size is again determined by
the number of papers in each component.

Experimental Results
We test Algorithm 5 on the ICLR 2018 dataset, using the full
authorship graph from the conference. Following the sug-
gestion in (Xu et al. 2019), we also try running Algorithm 5
after removing reviewers with a large number of authored
papers; this breaks up large connected components in the
authorship graph, thus allowing more flexibility in choosing
a partition. Specifically, we remove the 53 reviewers with
more than 3 papers authored (2.2% of reviewers) from the
reviewer pool. As a baseline for comparison, we also test
100 trials of random partitioning, which chooses half of the
connected components at random for each subset. We set
loads of kp = 3 and ka = 6, since these are standard confer-
ence loads (Xu et al. 2019).

First, we see in Figure 2a that Algorithm 5 outperforms
random partitioning in terms of similarity. Our algorithm
loses 11.7% of the non-strategyproof optimal similarity,
whereas the random partitioning loses 16.8% of optimal on
average. When we remove high-authorship reviewers before
running Algorithm 5, it only loses 8.9% of the optimal sim-
ilarity (which is still allowed to use all reviewers).

Finally, we examine the partition quality in a similar man-
ner as in Section 4. In Figure 2b, we plot the proportion of
papers within each subset of the partitions produced by Al-
gorithm 5 that received each decision. We see that the sub-
sets have similar proportions of papers receiving each de-
cision, regardless of whether we remove high-authorship re-
viewers. However, removing these reviewers results in a sig-
nificantly more balanced partition: the number of papers dif-
fers between subsets by 109 when high-authorship reviewers
are not removed and by only 1 when they are. In Figure 2c,
we see that the two subsets also have similar distributions of
paper scores when high-authorship reviewers are removed.

Our results are highly comparable to those of (Xu et al.
2019), who provide a partitioning algorithm that simply re-
turns an arbitrary feasible partition of the connected compo-
nents of the authorship graph. The authors report that this
algorithm loses only 11.4% of the optimal similarity on the
ICLR 2018 data with the same loads, a similar performance
to our algorithm’s despite the fact that our algorithm more
carefully chooses the partition. This phenomenon may be
related to the results of (Jecmen et al. 2022), who find that
randomly splitting reviewers into two “phases” of review-
ing does not significantly degrade assignment quality on real
conference datasets.

6 Discussion
We jointly considered two key aspects of the peer-
assessment process—strategyproofing and assignment
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Algorithm 5: Heuristic Algorithm for Arbitrary Authorship

Input: agents A, papers P , similarities S, authorship graph U , paper load kp, maximum agent load ka
1: M∗ ← max-similarity assignment with loads (ka, kp)
2: {V1, . . . , VN} ← vertices of the connected components of U
3: A′ ← {a′i : i ∈ [N ]}; P ′ ← {p′i : i ∈ [N ]}
4: for i, j ∈ [N ] do
5: s′ij ←

∑
aa∈Vi,pb∈Vj

sabI[(aa, pb) ∈M
∗
] +

∑
aa∈Vj ,pb∈Vi

sabI[(aa, pb) ∈M
∗
]

6: end for
7: M′, (A′

1,A′
2)← output of Algorithm 2 on input (A′,P ′, S′, k′ = 1)

8: T1 ←
⋃

i:a′
i∈A′

1
Vi; T2 ←

⋃
i:a′

i∈A′
2
Vi

9: M← max-similarity assignment with loads (ka, kp) respecting (T1, T2)
10: return assignmentM and partition (T1, T2)
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(c) Partitioned paper scores, heuristic algo-
rithm with reviewers removed

Figure 2: Experimental results using Algorithm 5 on the authorship from ICLR 2018.

quality—and derived fundamental limits as well as de-
signed computationally-efficient algorithms that achieve
these limits. Our theoretical and empirical contributions
lead to several directions of future work.

A first key direction of future work is to extend these the-
oretical results to arbitrary authorship graphs, as in confer-
ence peer review. We present a heuristic algorithm with an
empirical evaluation in Section 5, but the problem of estab-
lishing fundamental limits and optimal algorithms is open.
Second, most of our work considered worst-case guaran-
tees, while showing that it is NP-hard to attain instance-
wise optimality. However, our experimental results showed
that our algorithms perform much better than worst-case on
real-world instances. This suggests a theoretically interest-
ing and practically useful direction of future work: designing
algorithms with approximately-optimal instance-wise guar-
antees. Third, in contrast to past work, our partitions are
non-random. Building on our experimental results reveal-
ing that these non-random partitions still result in subsets
with roughly equal submission strengths, future work could
dig deeper into this phenomenon both theoretically and em-
pirically. Fourth, recent work (Mattei, Turrini, and Zhydkov
2020) provides a strategyproof algorithm with theoretical
guarantees that does not rely on partitioning. Even though
partitioning is by far the dominant way of strategyproofing,
it is of interest to extend our results to such strategyproof-
ing methods that may not employ partitioning. Finally, there

are various other types of strategic or dishonest behavior in
peer assessment (Stelmakh, Shah, and Singh 2021; Hvisten-
dahl 2013; Ferguson, Marcus, and Oransky 2014; Fanelli
2009; Resnik, Gutierrez-Ford, and Peddada 2008; Vijayku-
mar 2020; Littman 2021; Jecmen et al. 2020; Wu et al. 2021)
and the design of computational methods to mitigate such
behavior is vital. More generally, peer assessment is an im-
portant application with a broad set of challenges includ-
ing subjectivity (Lee 2015; Noothigattu, Shah, and Procac-
cia 2021), miscalibration (Roos, Rothe, and Scheuermann
2011; Wang and Shah 2019), biases (Tomkins, Zhang, and
Heavlin 2017; Stelmakh, Shah, and Singh 2019a; Manzoor
and Shah 2021), and others (Meir et al. 2020; Fiez, Shah,
and Ratliff 2020; Stelmakh et al. 2021; Wang et al. 2021;
Shah 2021).
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